Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Pharmacol ; 887: 173594, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-996862

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease, more commonly COVID-19 has emerged as a world health pandemic. There are couples of treatment methods for COVID-19, however, well-established drugs and vaccines are urgently needed to treat the COVID-19. The new drug discovery is a tremendous challenge; repurposing of existing drugs could shorten the time and expense compared with de novo drug development. In this study, we aimed to decode molecular signatures and pathways of the host cells in response to SARS-CoV-2 and the rapid identification of repurposable drugs using bioinformatics and network biology strategies. We have analyzed available transcriptomic RNA-seq COVID-19 data to identify differentially expressed genes (DEGs). We detected 177 DEGs specific for COVID-19 where 122 were upregulated and 55 were downregulated compared to control (FDR<0.05 and logFC ≥ 1). The DEGs were significantly involved in the immune and inflammatory response. The pathway analysis revealed the DEGs were found in influenza A, measles, cytokine signaling in the immune system, interleukin-4, interleukin -13, interleukin -17 signaling, and TNF signaling pathways. Protein-protein interaction analysis showed 10 hub genes (BIRC3, ICAM1, IRAK2, MAP3K8, S100A8, SOCS3, STAT5A, TNF, TNFAIP3, TNIP1). The regulatory network analysis showed significant transcription factors (TFs) that target DEGs, namely FOXC1, GATA2, YY1, FOXL1, NFKB1. Finally, drug repositioning analysis was performed with these 10 hub genes and showed that in silico validated three drugs with molecular docking. The transcriptomics signatures, molecular pathways, and regulatory biomolecules shed light on candidate biomarkers and drug targets which have potential roles to manage COVID-19. ICAM1 and TNFAIP3 were the key hubs that have demonstrated good binding affinities with repurposed drug candidates. Dabrafenib, radicicol, and AT-7519 were the top-scored repurposed drugs that showed efficient docking results when they tested with hub genes. The identified drugs should be further evaluated in molecular level wet-lab experiments in prior to clinical studies in the treatment of COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Drug Repositioning , Epithelial Cells/drug effects , Lung/cytology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Transcriptome , Antiviral Agents/therapeutic use , COVID-19 , Cells, Cultured , Computational Biology , Computer Simulation , Gene Expression Regulation/genetics , Humans , Pandemics , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL